Subject Name: Human Biological Science 2

Subject Code: BIOH122

SECTION 1 – GENERAL INFORMATION

Award/s: Total Course Credit Points: Level:

Bachelor of Health Science (Acupuncture) 128 1st Year
Bachelor of Health Science (Naturopathy) 128 1st Year
Bachelor of Health Science (Nutritional and Dietetic Medicine) 96 1st Year
Bachelor of Health Science (Myotherapy) 96 1st Year
Bachelor of Complementary Medicine 48 2nd Year

Duration: 1 Semester

Subject Coordinator: Dr Sara Zangana (Gold Coast Campus)

Subject is: Core Subject Credit Points: 4

Student Workload:

<table>
<thead>
<tr>
<th>Delivery Mode</th>
<th>No. timetabled hours per week</th>
<th>No. personal study hours per week</th>
<th>Total hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face to Face (On Campus)</td>
<td>6</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>e-Learning (Online)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended Learning (Online and On Campus)</td>
<td>2 x 2 hour lectures on campus - content delivery plus revision through lectures / interactive tutorial activities / workshop / discussion; PLUS 2 x 1 hour online tutorial / workshop activities - pre-reading activities with revision through quizzes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive Delivery (Summer School)</td>
<td>Contact hours are delivered over 5 weeks with 4 x 4 hour days delivered per week</td>
<td>Content: Combination lecture and tutorial activities</td>
<td></td>
</tr>
</tbody>
</table>

Assessment:

Group Laboratory Report 1 - Week 1; Online Quiz - Week 2; Group Laboratory Report 2 - Week 3; Group Laboratory Report 3 - Week 5; Final Written Exam - Week 6

Full Time
Part Time
Pre-requisites: BIOH111
Co-requisites: Nil

SECTION 2 – ACADEMIC DETAILS

Subject Rationale

BIOH122 builds on knowledge of human biology gained in BIOH111 - Human Biological Science 1 as it examines the haematological, cardiovascular, respiratory, lymphatic, immune, digestive, urinary and reproductive systems. This is done by considering their structure and functions, and integration of these systems to maintain balance within the body to create a coordinated functioning whole. The course also covers how the normal function of these systems are measured. Understanding normal functioning provides a basis for later studies in human disorders. Hence, this subject is a pre-requisite for BIOC211 - Pathology and Clinical Science 1.

Learning Outcomes

1. Describe the formation, functions and interrelationship of different blood components and apply this to the basis for blood types classification, intrinsic and extrinsic clotting pathway and the process of haemostasis in health and disease.
2. Describe the anatomy, function and physiology of the circulatory system, and explain homeostasis and regulation of cardiac output, blood pressure, stroke volume, cardiac cycle and the process of ‘bulk flow’.
3. Describe the anatomy, components and function of the lymphatic and immune systems and discuss their contributions to innate and adaptive immunity, regulation of inflammation, process of phagocytosis, self-recognition and self-tolerance.
4. Describe the anatomy, function and physiology of the respiratory system, and apply it to the mechanics and regulation of pulmonary ventilation, gas transport and external/internal respiration.
5. Describe the anatomy, function and physiology of the digestive system, and apply it to the digestion and absorption of nutrients together with the regulations of the cephalic, gastric and intestinal phases of digestion.
6. Describe the anatomy, function and physiology of the urinary/renal system, apply them to the function and regulation of glomerular filtration, tubular reabsorption or secretion and analyse their contribution to the regulation of blood volume, pH and osmolarity in healthy and diseased states.
7. Describe the anatomy, function and physiology of female and male reproductive systems, explain the process and regulation of oogenesis and spermatogenesis and apply it to the process of fertilisation, embryogenesis, pregnancy and childbirth.
8. Examine electrocardiogram (ECG) and blood pressure measurements and compare them to what is seen in the healthy and altered states.
9. Examine measurements of different lung capacities and volumes and compare the changes in the healthy and altered states.
10. Examine the normal and abnormal blood and urine results as they relate to the renal and cardiovascular system and how these changes in in the healthy and diseased state.
Assessment Tasks

<table>
<thead>
<tr>
<th>Type</th>
<th>Learning Outcomes Assessed</th>
<th>Session Content Delivered</th>
<th>Due</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Laboratory Report 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(structured lab report)</td>
<td>2 & 8</td>
<td>1-6</td>
<td>Week 5</td>
<td>10%</td>
</tr>
<tr>
<td>Online Quiz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple choice, definitions and diagrams</td>
<td>1-3</td>
<td>1-9</td>
<td>Week 7</td>
<td>20%</td>
</tr>
<tr>
<td>(50 minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Laboratory Report 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(structured lab report)</td>
<td>2, 4 & 9</td>
<td>1-6, 10-13</td>
<td>Week 8</td>
<td>10%</td>
</tr>
<tr>
<td>Group Laboratory Report 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(structured lab report)</td>
<td>2, 4, 6 & 10</td>
<td>1-6, 17-20</td>
<td>Week 13</td>
<td>10%</td>
</tr>
<tr>
<td>Final Written Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple choice, short answers, definitions, extended response questions (2 hours)</td>
<td>1-7</td>
<td>1-23</td>
<td>Final Examination Period</td>
<td>50%</td>
</tr>
</tbody>
</table>

All written assessments and online quizzes are due at 11:55 p.m. Sunday and submitted through the LMS.

Prescribed Readings:

Recommended Readings:

Subject Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Tutorials / Practicals</th>
</tr>
</thead>
</table>
| 1. | **Session 1**
Introduction (Subject Outline / Subject Aims / Assessment / Teaching Resources)
Haematological System
- Functions and properties of blood
- Formation of blood cells
- Formed elements | Activities are developed to allow the students to explore relevant concepts, expand on ideas and have peer and lecturer interaction. Activities also allow for formative assessment and feedback
Post lectures
- Components of whole blood
- Haematopoiesis
- Blood cell histology and function |
| | **Session 2**
Haematological System (Continued)
- Haemostasis
- Blood groups and blood types | Post lectures
- Protection from disease and loss of blood
- Platelet plug formation
- Coagulation cascade, blood clot formation and dissolution
- Blood grouping and cross-matching |
| 2. | **Session 3**
Cardiovascular System: The Heart
- Anatomy and histology
- Heart valves and circulation
- Cardiac muscle physiology
- The cardiac conduction system | Pre lectures
- Serous membranes
- Action potentials
Post lectures
- Anatomy of the heart
- Blood circulations
- Heart conduction system
Optional
- Video recorded heart dissection |
| | **Session 4**
Cardiovascular System: The Heart (Continued)
- The cardiac cycle
- Cardiac output | Post lectures
- The cardiac cycle: systole and diastole
- Factors affecting cardiac output
- Electrical activity in the heart and electrocardiograph (ECG) tracings
- Regulation of heart rate |
| 3. | **Session 5**
Cardiovascular System: Vasculature
- Structure and function of blood vessels
- Capillary exchange | Pre lectures
- Solute transportation and tonicity
Post lectures
- Structure and function of blood vessels
- Blood distribution routes
- Microcirculation and the dynamics of blood flow
- Capillary exchange |
Session 6
Cardiovascular System: Vasculature (Continued)
- Haemodynamics: Factors affecting blood flow
- Blood pressure
- Circulatory routes

Post lectures
1. Haemodynamics and blood flow
2. Control of blood pressure
3. Use of worksheets and 3D computer animations to explore blood vessels and circulatory routes

4. Laboratory Session 1
Cardiovascular Effects of Exercise
- Measurement of ECG, pulse, heart sounds, blood pressure before and following exercise

Session 7
Lymphatic and Immune System
- Lymphatic system structure and function
- Non-specific resistance

Post lectures
1. Components of the lymphatic system
2. Lymph vessels and the circulation of lymph
3. Lymphatic organs and tissues
4. Immune responses and the first line of defence

5. Session 8
Immune System (Continued)
- Specific resistance
- Immunity
- Cell mediated immunity

Pre lectures
1. Transportation: endocytosis
2. Types of white blood cells

Post lectures
1. Properties of the immune system
2. Innate and adaptive immunity
3. Hallmark features of the three line of immunological defence
4. Principles of phagocytosis
5. Cardinal signs of inflammation and the inflammatory response

Session 9
Immune System (Continued)
- Antigen mediated immunity
- Self-recognition and self-tolerance
- Aging and the immune system

Post lectures
1. Use of animation to review the processes of self-recognition and tolerance and their relationship to disease
2. Antigen processing and recognition
3. T and B lymphocytes
4. Immunoglobulins: class, prime location and function
5. Immunological memory

6. Session 10
The Respiratory System
- Anatomy and histology

Pre lectures
1. Serous membranes

Post lectures
1. Anatomy of the respiratory system: upper and lower tracts
Session 11
The Respiratory System (Continued)
- Pulmonary ventilation
- Lung volumes
- Exchange of oxygen and carbon dioxide: External respiration

Pre lectures
- Gaseous laws and partial pressures

Post lectures
- Pulmonary ventilation
- Breathing mechanics and respiratory muscles
- Spirometry and lung volumes and capacities
 - **Optional**
 - Breathing, blood composition and adaptation to the environment

Session 12
The Respiratory System (Continued)
- Transport of oxygen and carbon dioxide in blood
- Internal respiration
- Control of respiration

Post lectures
- Transport of blood gases
- Exchange of oxygen and carbon dioxide in the alveoli and body tissues
- Principles underlying oxygen binding to and dissociation from haemoglobin
- Control of respiration

Laboratory Session 2
Respiratory Physiology
- Measurement of respiration before and after exercise
- Measurement of airway resistance and dead space
- Respiratory function in health and disease

NON-TEACHING WEEK (note that make-up classes may be scheduled in this week)
- Semester 1 – This aligns with the week after Easter so it may fall between Weeks 6 to 8
- Semester 2 & Online students – The non-teaching week falls between Weeks 7 and 8

Session 13
The Digestive System
- Layers and innervation of the GIT
- The peritoneum
- Mouth to stomach
- Mouth
- Pharynx
- Oesophagus
- Stomach anatomy & physiology
- Secretions and enzymes of the stomach
- Deglutition

Pre lectures
- Autonomic nervous system
- Enzymes in digestion

Post lectures
- Anatomy and function of the digestive system
- Neural innervation of the digestive tract
- Digestion in the mouth and stomach
 - **Optional**
 - Exploring the role of microbes in the gut
Session 14
The Digestive System (Continued)
1. Pancreas and liver
2. Anatomy and histology of the small intestine
3. Digestion and absorption of the small intestine

Pre lectures
1. Pancreas anatomy and function

Post lectures
1. Accessory organs of the digestive system
2. The use of computer animations plus learning activity worksheets for gastric mucosa structure and function
3. Pancreas structure, secretions, and hormonal control of function
4. Adaptation of the small intestine to digestion and absorption

Optional
- Exploring the gut-brain axis

Session 15
The Digestive System (Continued)
1. Anatomy and histology of the large intestine
2. Functions of the large intestine
3. Defecation
4. Phases of digestion

Post lectures
1. Interactive learning activity worksheets to review the digestion of carbohydrates, proteins, lipids, and nucleic acids
2. Absorption and movement of nutrients from the gut into the systemic blood
3. Mechanical and chemical digestion in the large intestine
4. Exploring the principles of abnormal bowel movements

Session 16
The Urinary System
1. Anatomy and histology of the kidneys
2. The nephron

Pre lectures
1. Blood supply to kidneys

Post lectures
1. Anatomy and function of the urinary system
2. Use of animation and worksheets for the anatomy and function of the kidney and nephron
3. Kidney blood distribution
4. Urine drainage pathway

Optional
- Video recorded kidney dissection

Session 17
The Urinary System (Continued)
1. Overview of renal physiology
2. Glomerular filtration
3. Histology of the glomerulus
4. Glomerular filtration and its control

Pre lectures
1. Principles of hydrostatic and osmotic pressures
2. Renin-angiotensin-aldosterone system (RAAS)

Post lectures
1. Autonomic innervation of the kidney
<table>
<thead>
<tr>
<th>Session 18</th>
<th>The Urinary System (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre lectures</td>
<td>Glomerular filtration and structural adaptations of the renal corpuscle</td>
</tr>
<tr>
<td>Post lectures</td>
<td>The use of computer animations plus learning activity worksheets to understand net filtration pressure and the regulation of glomerular filtration rate (GFR)</td>
</tr>
<tr>
<td></td>
<td>Relationship between GFR and blood pressure</td>
</tr>
<tr>
<td></td>
<td>Tubular reabsorption and tubular secretion</td>
</tr>
<tr>
<td></td>
<td>Histology of the tubule</td>
</tr>
<tr>
<td></td>
<td>Resorption and secretion at the tubule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 19</th>
<th>The Urinary System (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre lectures</td>
<td>Primary and secondary modes of active transport</td>
</tr>
<tr>
<td>Post lectures</td>
<td>Adaptation of nephron tubules to reabsorption and secretion</td>
</tr>
<tr>
<td></td>
<td>Modes of transport for the movement of solutes and water</td>
</tr>
<tr>
<td></td>
<td>Homeostatic principles of fluid balance</td>
</tr>
<tr>
<td></td>
<td>Hormonal regulation of tubular reabsorption and secretion</td>
</tr>
<tr>
<td></td>
<td>Production of dilute and concentrated urine</td>
</tr>
<tr>
<td></td>
<td>Characteristics of normal urine</td>
</tr>
<tr>
<td></td>
<td>Urine transport storage and elimination</td>
</tr>
<tr>
<td></td>
<td>Fluid, Electrolyte and Acid Base Homeostasis</td>
</tr>
<tr>
<td></td>
<td>Fluid compartments and fluid balance</td>
</tr>
<tr>
<td></td>
<td>Acid base balance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 20</th>
<th>The Male Reproductive System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre lectures</td>
<td>Principles of mitosis and meiosis</td>
</tr>
<tr>
<td>Post lectures</td>
<td>Exploring kidney failure and assisted waste removal by dialysis</td>
</tr>
</tbody>
</table>

11. Session 19

12. Session 20
<table>
<thead>
<tr>
<th>Session 21</th>
<th>The Female Reproductive System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre lectures</td>
<td>Principles of mitosis and meiosis</td>
</tr>
<tr>
<td>Post lectures</td>
<td>Anatomy and function of the female reproductive organs</td>
</tr>
<tr>
<td></td>
<td>Oogenesis and the development of ovarian follicles</td>
</tr>
<tr>
<td></td>
<td>Exploring ovarian dysfunction and hormonal imbalance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 22</th>
<th>The Female Reproductive System (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post lectures</td>
<td>Phases of the female reproductive cycle</td>
</tr>
<tr>
<td></td>
<td>Hormonal changes during the reproductive cycle</td>
</tr>
<tr>
<td></td>
<td>The ovarian and uterine cycles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 23</th>
<th>Pregnancy and Childbirth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post lectures</td>
<td>The first week of pregnancy: from fertilization to implantation</td>
</tr>
<tr>
<td></td>
<td>Ectopic pregnancies and twinning</td>
</tr>
<tr>
<td></td>
<td>Role of the placenta in hormonal changes in pregnancy and lactation</td>
</tr>
<tr>
<td></td>
<td>Maternal adaptations to labour and delivery</td>
</tr>
<tr>
<td></td>
<td>Exploring 3D animation of foetal development from conception to birth</td>
</tr>
<tr>
<td></td>
<td>Foetal programming and learning</td>
</tr>
</tbody>
</table>

| 14. | Non-Teaching Week/Practical Examination Week 1 |
| Note that make-up classes may be scheduled in this week |

| 15. | Non-Teaching Week/Practical Examination Week 2 |
| Note that make-up classes may be scheduled in this week |

<p>| 16. | Final Examination Week 1 |
| Students are required to sit examinations using the Respondus Lockdown Browser software per the Examination Policy – Higher Education. Refer to your local campus calendar for exam opening and closing times. |</p>
<table>
<thead>
<tr>
<th>17.</th>
<th>Final Examination Week 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are required to sit examinations using the Respondus Lockdown Browser software per the Examination Policy – Higher Education. Refer to your local campus calendar for exam opening and closing times.</td>
<td></td>
</tr>
</tbody>
</table>